Giải phương trình \( \sqrt{x} +\sqrt{3x-2}=x^2+1. \)

Giải phương trình \[ \sqrt{x} +\sqrt{3x-2}=x^2+1. \]

Hướng dẫn. Điều kiện \( x \geqslant \frac{2}{3}. \) Dự đoán nghiệm của phương trình là \( 1 \) nên ta nhân hai vế của phương trình với 2 và thêm bớt \( 4x \) ta được
\[2x^2-4x+2 + x-2\sqrt{x}+1 +3x-2 -2\sqrt{3x-2}+1=0 \]
\[ \Leftrightarrow 2(x-1)^2 + \left(\sqrt{x}-1\right)^2+\left(\sqrt{3x-2}-1\right)^2=0 \]
Từ đó suy ra \[ (x-1)^2= \left(\sqrt{x}-1\right)^2=\left(\sqrt{3x-2}-1\right)^2=0 \] và tìm được nghiệm duy nhất \( x=1 \).
\end{proof}
Cách khác, đặt \( u= \sqrt{x}, v=\sqrt{3x-2} \) ta suy ra \( u+v=x^2+1, u^2=x, v^2=3x-2 \) ta đưa về đánh giá các biểu thức đại số không chứa căn.
Cách khác nữa, sử dụng bất đẳng thức Cauchy ta có
\[ \frac{x +1}{2} \geqslant \sqrt{x}; \frac{3x-2+1}{2} \geqslant \sqrt{3x-2} \]
Cộng từng vế hai bất đẳng thức trên ta được \[ 2x \geqslant \sqrt{x} +\sqrt{3x-2}. \] Mà \( \sqrt{x} +\sqrt{3x-2}=x^2+1 \) nên suy ra \[ 2x \geqslant x^2+1 \Leftrightarrow (x-1)^2 \leqslant 0. \] Điều này chỉ xảy ra khi và chỉ khi \( x=1. \)

Các bài viết, tài liệu được chúng tôi sưu tầm và chia sẻ thường không rõ tác giả. Nếu bạn thấy ảnh hưởng quyền lợi, vi phạm bản quyền xin gửi mail tới phuong@dayhoc.page. Xin cám ơn!
Leave a Reply
Previous Article

Đề thi Tổng cục Thống kê các năm

Next Article

Một số bài tập giới hạn khó

Related Posts