Limit of a Sequence

Limit of a sequence

1. Basic keywords

Some basic limits:

  • $ \lim c=c$
  • $ \lim \frac{1}{n}=0 $
  • $ \lim \frac{c}{n^k}=0 $ for some positive integers $ k $
  • $ \lim \frac{1}{\sqrt{n}}=0 $
  • $ \lim \frac{1}{\sqrt[k]{n}}=0 $ for some positive integers $ k $
  • $ \lim q^n=0 $ for $ |q|<1 $
  • $ \lim n=+\infty $
  • $ \lim n^k=+\infty $ for some positive integers $ k $
  • $ \lim \sqrt{n}=+\infty $
  • $ \lim \sqrt[k]{n}=+\infty $ for some positive integers $ k $
  • $ \lim q^n=+\infty $ for $ q>1. $

Squeeze Law

Let three sequences $ (u_n),(v_n) $ and $ (w_n) $ such that $ u_n\le v_n\le w_n $ and $ \lim u_n=\lim w_n=L ,$ then \[ \lim v_n=L\]
Specially, if $ |u_n|\le v_n $ and $ \lim v_n=0 $ then $ \lim u_n=0. $

Basic Limit Law

Finite limits: If $ \lim u_n=A $ and $ \lim v_n=B $ then

  • $ \lim (u_n\pm v_n)=\lim A\pm \lim B $
  • $ \lim (c\cdot u_n)= c\cdot A $
  • $ \lim (u_n\cdot v_n)=AB $
  • $ \lim \frac{u_n}{v_n}=\frac{A}{B} $ if $ b\ne 0 $

Infinite Limits:

  • $ \lim (u_n\cdot v_n) $
  • $ \lim \frac{u_n}{v_n} $

2. Example

Example 1. Find the limit of the following sequence, or determine that the limit does not exist: $$ \lim \frac{3n^3-1}{2n^3-1} $$
Hint. Divide numerator and denominator by $ n^3, $ we get \begin{align*}
\lim \frac{3n^3-1}{2n^3-1} &=\lim\frac{3-\frac{1}{n^3}}{2+\frac{1}{n^3}}\\
&=\frac{3}{2}
\end{align*}
So $ \lim \frac{3n^3-1}{2n^3-1} =\frac{3}{2}. $

Example 2.  Find the limit of the following sequences if it exists:

  1. $ \lim \dfrac{2n^3-n^2+1}{n^3+1}=2 $
  2. $ \lim \dfrac{-n^7-n^6+1}{n+2n^7}=-\dfrac{1}{2} $
  3. $ \lim \dfrac{(n+1)(n^2-3n+5)}{n^3-2n(n^2+1)+2}=-1 $
  4. $ \lim \dfrac{n\sqrt{n}+n^2-1}{2n^2+1}=\dfrac{1}{2} $
  5. $ \lim \dfrac{n+\sqrt{n^2+1}}{3n-1}=\dfrac{2}{3} $
  6. $ \lim \dfrac{n+\sqrt{n^2+2n+1}}{2-\sqrt{4n^2+1}}=-1 $
  7. $ \lim \dfrac{2n+\sqrt{n^3+2n^2+1}}{n\sqrt{3n+2}-1}=\dfrac{1}{\sqrt{3}} $
  8. $ \lim \dfrac{\sqrt[3]{-27n^6+2n+1}}{4n^2+4n+1}=-\dfrac{3}{4} $
  9. $ \lim \sqrt{\dfrac{3n^2+2n-1}{n^2+5n}}=\sqrt{3} $
  10. $ \lim \left(\dfrac{2n^2}{n^2+3n+1}-\dfrac{2n}{3n+1}\right) $
  11. $ \lim \dfrac{n+1}{n^3+1}=0 $
  12. $ \lim \dfrac{11n^2-2n+1}{n^3+n^2+1}=0 $
  13. $ \lim \dfrac{(2n+1)(n-5)+n^2+1}{n^3+n^2}=0 $
  14. $ \lim \left(\dfrac{2n}{3n^2+1}-\dfrac{n}{3n^2+1}\right) $
  15. $ \lim \dfrac{n+\sqrt{n^3+1}}{2n^2+\sqrt{n}-1}=0 $
  16. $ \lim \dfrac{2}{\sqrt{n^2+1}-n} $
  17. $ \lim \dfrac{1}{\sqrt{n}\left(\sqrt{n+2}-\sqrt{n+1}\right)} $
  18. $ \lim \dfrac{3}{\sqrt{4n^2+1}-2n+1} $
  19. $ \lim \dfrac{2^n+3^n}{5\cdot3^n+2^n} $
  20. $ \lim \dfrac{2^n-1}{3^n+2^{n+1}} $
  21. $ \lim \dfrac{2^n-3^n+5^{n+2}}{5^n+3^{n+1}} $
  22. $ \lim \dfrac{(-2)^n-5^{n+1}}{5^{n-1}+3^{n+1}} $

Example 3. Find the limit of the following sequences if it exists:

  1. $ \lim (n^2+n-3)=+\infty $
  2. $ \lim (2n^2-n^3+4)=-\infty $
  3. $ \lim (n\sqrt{n}+3n-1)=+\infty $
  4. $ \lim \dfrac{2n^3-n^2+1}{n^2+1}=+\infty $
  5. $ \lim \dfrac{11n^4+1}{-5n^2+n+1}=-\infty $
  6. $ \lim \dfrac{2n\sqrt{n}-3}{n+\sqrt{n}-1} $
  7. $ \lim \dfrac{3^n+2^n}{2^{n+1}-1} $

Example 4. Find the limit of the following sequences if it exists:

  1. $ \lim (n\sqrt{n}+n-3)=+\infty $
  2. $ \lim (\sqrt{n^2+n+1}+3n)=+\infty $
  3. $ \lim (\sqrt{n^2+1}-3n)=-\infty $
  4. $ \lim (\sqrt{n+1}+\sqrt{n+2})=+\infty $
  5. $ \lim (\sqrt{n+1}-\sqrt{n+2})=0 $
  6. $ \lim \left(\dfrac{1}{n-\sqrt{n^2+1}}-\dfrac{1}{n+\sqrt{n^2+1}}\right)$
  7. $ \lim (\sqrt{n^2+n+1}-n)$
  8. $ \lim (\sqrt{n^2+n+1}-\sqrt{n^2-n+1})$
  9. $ \lim \dfrac{3n+2}{\sqrt{n^2+3}-\sqrt{n^2+1}}$
  10. $ \lim \dfrac{\sqrt{n^2+n}-n}{\sqrt{n^2+1}-\sqrt{n^2+2n}}$
  11. $ \lim (\sqrt[3]{n^3+1}-n)$
  12. $ \lim (2n+1+\sqrt[3]{1-8n^3})$

Example 5. Find the limit of the following sequences if it exists:

  1. $ \lim n(\sqrt{n^2+1}-n)=+\infty $
  2. $ \lim \sqrt{n+1}(\sqrt{n+2}-\sqrt{n}) $
  3. $ \lim n^2(\sqrt{3n^4+5}-\sqrt{3n^4+2}) $
  4. $ \lim \dfrac{n(n+\sqrt{n-n^3})}{n-\sqrt{n^2+4n}} $
  5. $ \lim (\sqrt{n^2+1}-\sqrt[3]{n^3+n})$
  6. $ \lim (\sqrt{n^2+n+1}+\sqrt[3]{1-n^3})$
  7. $ \lim (2n-\sqrt{9n^2+n}+\sqrt{n^2+2n}) $
  8. $ \lim \left(\sqrt{n^2+2n}+2\sqrt[3]{n^2-8n^3}+\sqrt{n^2+1}\right) $

Example 6. Find the limit of the following sequence \[ \lim \frac{1+2+3+\cdots+n}{1+n^3} \]

Example 7. Find the limit of the following sequences: $ u_n=\dfrac{\sin(2n+1)}{3^n},v_n=\dfrac{(-1)^n}{2n+3} $
Hint. For all $ n $ we have \[ \left|\frac{\sin(2n+1)}{3^n}\right|\le \frac{1}{3^n} \]
and \[ \lim \frac{1}{3^n}=0 \] and so $ \lim \frac{\sin(2n+1)}{3^n}=0. $

Example 8. Express the repeating decimal $ 0.777… $ as a fraction.
Hint. We have \begin{align*} 0.777…&=0.7+0.07+0.0007+\cdots\\
&=\frac{7}{10}+\frac{7}{100}+\frac{7}{1000}+\cdots \end{align*}
This is the sum of an geometric sequence with $ u_1=\frac{7}{10} $ and the common ratio $ q=\frac{1}{10}<1 $. So \[ 0.777…=\frac{u_1}{1-q}=\frac{\frac{7}{10}}{1-\frac{1}{10}}=\frac{7}{9} \]

Các bài viết, tài liệu được chúng tôi sưu tầm và chia sẻ thường không rõ tác giả. Nếu bạn thấy ảnh hưởng quyền lợi, vi phạm bản quyền xin gửi mail tới phuong@dayhoc.page. Xin cám ơn!
Leave a Reply
Previous Article

Kiểu từ điển dictionary trong python

Next Article

Giới hạn của dãy số

Related Posts